Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of an Isolated Timing Chain Guide System Utilizing Indirect Force Measurement Techniques

1997-05-20
971963
This paper outlines the development process of a vibration isolation system for the timing chain guides of an internal combustion engine. It was determined through testing that the timing chain guides are a significant path by which the chain/sprocket impacts are transmitted to other powertrain components. These components radiate the energy as chain mesh order narrow band sound as well as wide band energy. It was found that isolation of the chain guides produced a significant reduction in radiated sound levels, reduced mesh frequency amplitudes, and improved sound quality. The development process utilized indirect force measurement techniques for simulation of the chain loading and FEA prediction of the resulting chain guide forces and displacements. The design of the isolation system involved material selection based on dynamic properties, frequency and temperature ranges, the operating environment, FEA geometry optimization, and durability testing.
Technical Paper

A Mainstream Test Methodology for Developing a Vehicle Equipped with an Electronic Stability Control System

2014-04-01
2014-01-0130
There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few.
Technical Paper

Light Truck Aerodynamic Simulations Using a Lattice Gas Based Simulation Technique

1999-11-15
1999-01-3756
Several studies have been conducted in an effort to bring Computational Fluid Dynamics (CFD) out of the research arena (5) and into the product design environment as a useful aerodynamic design tool. The focus of these studies has ranged from extremely simple shapes to more complex geometries representative of real vehicles. This paper presents the results of real vehicle applications in which CFD was used to predict the aerodynamic effect of proposed surface modifications. The simulation data was generated using a numerical method derived from lattice gas theory to evaluate the aerodynamic effect of surface modifications. The commercial software Powerflow was used to prepare the model, perform the simulation and post-process the results. These case studies were performed in parallel with real vehicle development programs. The depth of experimental comparison data was limited by traditional vehicle program timing and budget constraints.
Technical Paper

Characterization of Phosphates Found in Vehicle-Aged Exhaust Gas Catalysts: A Raman Study

2006-04-03
2006-01-0410
Phosphorus contamination from engine oil additives has been associated with reduced performance of vehicle-aged exhaust gas catalysts. Identifying phosphorus species on aged catalysts is important for understanding the reasons for catalytic performance degradation. However, phosphorus is present only in small quantities, which makes its detection with bulk analytical techniques difficult. Raman microscopy probes small regions (a few microns in diameter) of a sample, and can detect both crystalline and amorphous materials. It is thus ideal for characterizing phosphates that may have limited distribution in a catalyst. However, suitable Raman spectra for mixed-metal phosphates that might be expected to be present in contaminated catalysts are not generally available.
Technical Paper

Full Hybrid Electrical Vehicle Battery Pack System Design, CFD Simulation and Testing

2010-04-12
2010-01-1080
CFD analysis was performed using the FLUENT software to design the thermal system for a hybrid vehicle battery pack. The battery pack contained multiple modular battery elements, called bricks, and the inlet and outlet bus bars that electrically connected the bricks into a series string. The simulated thermal system was comprised of the vehicle cabin, seat cavity, inlet plenum, battery pack, a downstream centrifugal fan, and the vehicle trunk. The fan was modeled using a multiple reference frame approach. A full system analysis was done for airflow and thermal performance optimization to ensure the most uniform cell temperatures under all operating conditions. The mesh for the full system was about 13 million cells run on a 6-node HP cluster. A baseline design was first analyzed for fluid-thermal performance. Subsequently, multiple design iterations were run to create uniform airflow among all the individual bricks while minimizing parasitic pressure drop.
Technical Paper

Time-Resolved Measurement of Speciated Hydrocarbon Emissions During Cold Start of a Spark-Ignited Engine

1994-03-01
940963
Speciated HC emissions from the exhaust system of a production engine without an active catalyst have been obtained with 3 sec time resolution during a 70°F cold start using two control strategies. For the conventional cold start, the emissions were initially enriched in light fuel alkanes and depleted in heavy aromatic species. The light alkanes fell rapidly while the lower vapor pressure aromatics increased over a period of 50 sec. These results indicate early retention of low vapor pressure fuel components in the intake manifold and exhaust system. Loss of higher molecular weight HC species does occur in the exhaust system as shown by experiments in which the exhaust system was preheated to 100° C. The atmospheric reactivity of the exhaust HC emissions for photochemical smog formation increases as the engine warms.
Technical Paper

Modeling Current Generation Catalytic Converters: Laboratory Experiments and Kinetic Parameter Optimization - Steady State Kinetics

1992-02-01
920096
An experimental data base of catalyst conversion efficiency was generated, using a tubular flow reactor which contained either a Pt/Rh (5:1; 40g/ft3) or a Pd/Rh (5:1; 40g/ft3) catalyst sample, for the purpose of updating the kinetic rate constants in the Ford TWC model. Steady-state conversion efficiency of CO, NO, C3H8, C3H6, H2 and O2 through these catalysts were determined for a variety of inlet species concentrations and inlet gas temperatures. These data were obtained for values of redox ratio between 0.5 (excess O2) and 4.0, and inlet gas temperatures between 371°C and 593°C. All experimental details and modeling procedures utilized in obtaining an optimized set of kinetic parameters are included. Results of these experiments show significant improvement in CO and NO conversion efficiency and an increase in NH3 production for both catalyst formulations over previous generation catalyst formulations when redox ratio is greater than unity.
Technical Paper

The Measurement of Underhood and Underbody Velocities with the H-Meter

1999-03-01
1999-01-0234
Optimizing heat protection for underbody and underhood components, using non-CFD heat transfer CAE tools, requires the estimation of local convective heat transfer coefficients. This estimate, in turn requires knowledge of the local air velocity. Currently available methods for obtaining this velocity at several vehicle locations have been impractical and expensive for use in over-the-road testing. This paper presents the design, fabrication, and field testing results of a 26 mm diameter spherical transducer which measures the local heat transfer coefficient directly. The transducer contains three thermocouples and a heater. It is calibrated to correlate the coefficient with the air velocity. Drawing less than 0.1 A, a number of them can be powered by the vehicle battery with negligible drain. The data acquisition consists of sampling three thermocouples per spherical transducer.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Journal Article

A Fuzzy Inference System for Understeer/Oversteer Detection Towards Model-Free Stability Control

2016-04-05
2016-01-1630
In this paper, a soft computing approach to a model-free vehicle stability control (VSC) algorithm is presented. The objective is to create a fuzzy inference system (FIS) that is robust enough to operate in a multitude of vehicle conditions (load, tire wear, alignment), and road conditions while at the same time providing optimal vehicle stability by detecting and minimizing loss of traction. In this approach, an adaptive neuro-fuzzy inference system (ANFIS) is generated using previously collected data to train and optimize the performance of the fuzzy logic VSC algorithm. This paper outlines the FIS detection algorithm and its benefits over a model-based approach. The performance of the FIS-based VSC is evaluated via a co-simulation of MATLAB/Simulink and CarSim model of the vehicle under various road and load conditions. The results showed that the proposed algorithm is capable of accurately indicating unstable vehicle behavior for two different types of vehicles (SUV and Sedan).
Technical Paper

Computer Optimization of Camshaft Lift Profiles for a NASCAR V-8 Engine with Restrictor Plate

1996-12-01
962514
The introduction of carburetor restrictor plates in NASCAR racing in 1988 necessitated the redesign of some engine components, such as the camshaft and exhaust headers, to re-optimize engine performance. This paper describes how an engine performance computer simulation code was used to quickly study the effects of the restrictor plate on the “breathing” processes of the Ford NASCAR V8 engine and determine the optimal intake and exhaust cam lobe profiles to maximize wide-open throttle torque and horsepower. The resulting camshaft design produced over 40 additional horsepower and greater average torque over the useful engine speed range for super speedways. The interaction between exhaust wavedynamics (i.e., “tuning”) and cam events was investigated and shown to be of critical importance to the optimization of the engine's trapping efficiency.
Technical Paper

Ford 2011 6.7L Power Stroke® Diesel Engine Combustion System Development

2011-04-12
2011-01-0415
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel, and code named "Scorpion," was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. The combustion system includes the piston bowl, swirl level, number of nozzle holes, fuel spray angle, nozzle tip protrusion, nozzle hydraulic flow, and nozzle-hole taper. While all of these parameters could be explored through extensive hardware testing, 3-D CFD studies were utilized to quickly screen two bowl concepts and assess their sensitivities to a few of the other parameters. The two most promising bowl concepts were built into single-cylinder engines for optimization of the rest of the combustion system parameters. 1-D CFD models were used to set boundary conditions at intake valve closure for 3-D CFD which was used for the closed-cycle portion of the simulation.
Technical Paper

Design of an Integral Perforated Manifold, Muffler, and Catalyst

2001-03-05
2001-01-0222
The development of an integrated Perforated Manifold, Muffler, and Catalyst (PMMC) for an automotive engine exhaust system is described. The design aims to reduce tailpipe emissions and improve engine power while maintaining low sound output levels from the exhaust. The initial design, based on simplified acoustic and fluid dynamic considerations, is further refined through the use of a computational approach and bench tests. A final prototype is fabricated and evaluated using fired engine dynamometer experiments. The results confirm earlier analytical estimates for improved engine power and reductions of emissions and noise levels.
X